Rozkład t-studenta – teoria

Rozkład t-studenta(nazywany również rozkładem t lub po prostu rozkładem studenta) jest rozkładem prawdopodobieństwa wykorzystywanym do testowania hipotez statystycznych, oceny błedów pomiaru oraz konstruowania przedziałów ufności. Do wyznaczenia jego wartości używana jest tablica rozkładu t-studenta

Kiedy używamy rozkładu t-studenta?

Rozkład t-studenta stosowany jest wyłącznie w sytuacjach kiedy nie jest znane odchylenie standardowe, a liczba obserwacji(rozmiar próby) jest mniejsza od 30. Jeżeli liczba obserwacji jest większa lub równa 30, zamiast rozkładu t-studenta wykorzystujemy rozkład normalny. Spowodowane jest to tym, że dla n>30 rozkład studenta jest bardzo zbliżony do rozkładu normalnego. Dla n<30 rozkład t-studenta jest bardziej “rozciągnięty”, co oznacza że bardziej prawdopodobne są wartości silnie odbiegające od średniej, niż w przypadku rozkładu normalnego.

Wykres rozkładu t-studenta

Własności rozkładu t-studenta:

  • Rozkład t-studenta używany jest w sytuacjach gdy nie jest znane odchylenie standardowe populacji
  • Dla n>=30 zamiast rozkładu t-studenta korzystamy z rozkładu normalnego N(0,1)
  • Dla n-obserwacji rozkład t-studenta ma n-1 stopni swobody
  • Jest symetryczny
  • Jest jednokładny

Odchylenie standardowe – częsty błąd:

Często w zadaniach podane jest odchylenie standardowe, nie oznacza to jednak że jest to odchylenie standardowe populacji.
Np. Jeśli w treści zadania znajduje się informacja, że rozkład wielkości butelek w pewnym sklepie jest zmienną o odchyleniu standardowym 4 to jest to równoważne z tym, że odchylenie standardowe populacji wynosi 4. Jednak w przypadku gdy dana jest informacja, że wzięto 200 butelek i na ich podstawie wyznaczono odchylenie standardowe równe 3.4, oznacza to że odchylenie dotyczy tylko tej grupy, a odchylenie standardowe populacji jest nieznane.

k\p0,50,20,10,050,020,010,0050,0020,001
11,00003,07776,313812,706231,820563,6567127,3213318,3088636,6192
20,81651,88562,92004,30296,96469,924814,089022,327131,5991
30,76491,63772,35343,18244,54075,84097,453310,214512,9240
40,74071,53322,13182,77643,74694,60415,59767,17328,6103
50,72671,47592,01502,57063,364904,03214,77335,89346,8688
60,71761,43981,94322,44693,14273,70744,31685,20765,9688
70,71111,4191,89462,36462,99803,49954,02934,78535,4079
80,70641,39681,85952,30602,89653,35543,83254,50085,0413
90,70271,38301,83312,26222,82143,24983,68974,29684,7809
100,69981,37221,81252,22812,76383,16933,58144,14374,5869
110,69741,36341,79592,20102,71813,10583,49664,03474,4370
120,69551,35621,78232,17882,68103,05453,42843,92964,3178
130,69381,35021,77092,16042,65033,01233,37253,85204,2208
140,69241,34501,76132,14482,62452,97683,32573,78744,1405
150,69121,34061,75302,13142,60252,94673,28603,73284,0728
160,69011,33681,74592,11992,58352,92083,25203,68624,0150
170,68921,33341,73962,10982,56692,89823,22243,64583,9651
180,68841,33041,73412,10092,55242,87843,19663,61053,9216
190,68761,32771,72912,09302,53952,86093,17373,57943,8834
200,68701,32531,72472,08602,52802,84533,15343,55183,8495
210,68641,32321,72072,07962,51762,83143,13523,52723,8193
220,68581,32121,71712,07392,50832,81883,11883,50503,7921
230,68531,31951,71392,06872,49992,80733.10403,48503,7676
240,68481,31781,71092,06392,49222,79693,09053,46683,7455
250,68441,31631,70812,05952,48512,78742,07823,45023,7251
260,68401,31501,70562,05552,47862,77873,06693,43503,7066
270,68371,31371,70332,05182,47272,77073,05653,42103,6896
280,68341,31251,70112,04842,46712,76333,04693,40823,6739
290,68301,31141,69912,04522,46202,75643,03803,39623,6594
300,68281,31041,69732,04232,45732,75003,02983,38523,6460
320,68221,30861,69392,03692,44872,73853,01493,36533,6218
340,68181,30701,69092,03222,44112,72843,00203,34793,6007
360,68141,30551,68832,02812,43452,71952,99053,33262,5821
380,68101,30421,68602,02442,42862,71162,98033,31903,5657
400,68071,30311,68392,02112,42332,70452,97123,30693,5510
420,68041,30201,68202,01812,41852,69812,96303,29603,5377
440,68011,30111,68022,01542,41412,69232,95553,28613,5258
460,67991,30021,67872,01292,41022,68702,94883,27713,5150
480,67961,29941,67722,01062,40662,68222,94263,26893,5051
500,67941,29871,67592,00862,40332,67782,93703,26143,4960
550,67901,29711,67302,00402,39612,66822,92473,25613,4764
600,67861,29581,67062,00032,39012,66932,91463,23173,4602
650,67831,29471,66861,99712,38512,65362,90603,22043,4466
700,67801,29381,66691,99442,38082,64792,89873,21083,4350
800,67761,29221,66411,99012,37392,63872,88702,19533,4163
900,67721,29101,66201,98672,36852,63162,87793,18333,4019
1000,67701,29011,66021,98402,36422,62592,87073,17373,3905
1200,67651,28861,65771,97992,35782,61742,85993,15953,3735
1500,67611,28721,65511,97592,35152,60902,84923,14553,3566
2000,67571,28581,65251,97192,34512,60062,83853,13153,3398
2500,67551,28491,65101,96952,34142,59562,83223,12323,3299
3000,67531,28441,64991,96792,33882,59232,82793,11763,3233
4000,67511,28371,64871,96592,33572,58822,82273,11072,3150
5000,67501,28321,64791,96472,33382,58572,81953,10663,3101
0,67451,28161,64491,96002,32632,57582,80703, 09023,2905